Wahrscheinlichkeitsrechnung

Stetige Gleichverteilung

Was die stetige Gleichverteilung ist und welche Formeln du dazu kennen musst erklären wir dir in diesem Video .

Du möchtest außerdem Wissen was es mit der diskreten Gleichverteilung auf sich hat? Dann hilft dir unser Video zum Thema weiter!

 

Inhaltsübersicht

Stetige Gleichverteilung

Die stetige Gleichverteilung ist eine Wahrscheinlichkeitsverteilung, die auf einem Intervall eine konstante Wahrscheinlichkeitsdichte hat. Jeder denkbare reelle Wert der Zufallsvariable ist in einem vorgegebenen Intervall gleich wahrscheinlich. Daher kommt auch der Name uniforme Verteilung.

Das erscheint dir noch nicht ganz verständlich?

Dann stell dir das Ganze mit einem Beispiel vor. Nehmen wir an, es ist Samstagnacht und du bist auf dem Weg vom Club nach Hause.

Stetige Gleichverteilung, Stetige Gleichverteilung Beispiel
direkt ins Video springen
Stetige Gleichverteilung

Du weißt, dass die S-Bahn nachts nur noch stündlich fährt, aber hast die genauen Abfahrtszeiten vergessen. Läufst du also auf gut Glück zur Station ist deine Wartezeit eine stetige Gleichverteilung zwischen a gleich null und b gleich sechzig. Denn zwischen null und sechzig Minuten sind alle Zeiten uniform verteilt. Das heißt du kannst jede erdenkliche Zeit warten, zum Beispiel auch 5,2343 Minuten. Ist doch logisch, oder?

In Kurzschreibweise sieht das Ganze dann so aus:

X\sim\ G\left(0;60\right)

bzw. allgemein X\sim\ G (a;b)

 

Erwartungswert Gleichverteilung: stetig

Den Erwartungswert im stetigen Fall kannst du mit folgender Formel berechnen:

E(X)\ =\ \frac{a\ +\ b}{2}

Du siehst, dass der Erwartungswert also genau in der Mitte von a und b liegt.

 

Varianz Gleichverteilung: stetig

Die Varianz der stetigen Gleichverteilung kannst du mit dieser Formel ausrechnen:

Var(X)\ =\ \frac{{(b-a)}^2}{12}

Keine Sorge, wir ersparen dir hier die mathematische Herleitung. Am besten du lernst diese Formeln auswendig oder schreibst sie auf dein Formelblatt.

 

Dichtefunktion Gleichverteilung

Die Dichtefunktion der stetigen Gleichverteilung stellst du wie folgt dar:

Stetige Gleichverteilung Dichtefunktion
direkt ins Video springen
Stetige Gleichverteilung Dichtefunktion

Die Dichtefunktion kann grob in zwei Teile aufgeteilt werden. Innerhalb des betrachteten Intervalls haben alle Werte – hier auch Träger genannt – die gleiche Wahrscheinlichkeit. Diese wird mit  ausgedrückt. Außerhalb diesen Bereichs ist die Wahrscheinlichkeit immer gleich 0. Somit lässt sich auch die zweiteilige Definition der Dichtefunktion der stetigen Gleichverteilung erklären.

 

Gleichverteilung Verteilungsfunktion: stetig

Die zugehörige Verteilungsfunktion ist dreiteilig definiert:

Verteilungsfunktion Gleichverteilung: stetig
direkt ins Video springen
Verteilungsfunktion Gleichverteilung: stetig

Auch das lässt sich ganz leicht erklären, wenn du den Graphen betrachtest. Innerhalb des betrachteten Intervalls ist die Verteilungsfunktion eine Gerade, welche konstant von 0 bis 1 ansteigt. Das liegt daran, dass die kumulierten Wahrscheinlichkeiten gleichmäßig verteilt sind. An der Stelle x=a ist die Funktion gleich 0 und nähert sich kontinuierlich dem Wert 1mit Annäherung an b.

Stetige Gleichverteilung Beispiel

Greifen wir unsere Überlegung von oben wieder auf. Du bist gerade tot müde auf dem Weg zur S-Bahnstation. Da du so schnell wie möglich nach Hause in dein Bett möchtest und genau weißt, dass du bei einer Wartezeit von mehr als 15 Minuten am Bahnsteig einschlafen wirst, rechnest du aus, wie wahrscheinlich es ist, dass du weniger als 15 Minuten warten musst.

Dazu benutzt du die Formel der Verteilungsfunktion und setzen unsere Werte ein.

Stetige Gleichverteilung Beispiel
direkt ins Video springen
Stetige Gleichverteilung Beispiel

Die Wahrscheinlichkeit, dass du höchstens 15 Minuten warten musst, beträgt also 25 Prozent. Schade, du verbringst die Nacht also voraussichtlich am Bahnsteig.

Aber Spaß bei Seite! Du kannst jetzt gerne noch den Erwartungswert und die Varianz selbst berechnen, indem du die Werte in die Formeln einsetztst. Die Lösungen geben wir dir vor:

E(X)\ =30

Var(X)\ =\ 300

Das wars auch schon zur Gleichverteilung! Du weißt jetzt, wie man sie berechnet und dass du den Club nächstes Mal früher verlassen solltest.

 


Andere Nutzer halten diese Inhalte aus dem Bereich „Wahrscheinlichkeitsrechnung“ für besonders klausurrelevant

Hallo, leider nutzt du einen AdBlocker.

Auf Studyflix bieten wir dir kostenlos hochwertige Bildung an. Dies können wir nur durch die Unterstützung unserer Werbepartner tun.

Schalte bitte deinen Adblocker für Studyflix aus oder füge uns zu deinen Ausnahmen hinzu. Das tut dir nicht weh und hilft uns weiter.

Danke!
Dein Studyflix-Team

Wenn du nicht weißt, wie du deinen Adblocker deaktivierst oder Studyflix zu den Ausnahmen hinzufügst, findest du hier eine kurze Anleitung. Bitte lade anschließend die Seite neu.