Darmstadt: Masterarbeit: Erkennung und Segmentierung von suggestiver Kleidung
Jetzt bewerbenStellenbeschreibung
Hintergrund/Motivation:
Zur Erkennung von erotischem und pornografischen Bildmaterial werden häufig Modelle eingesetzt, welche menschliche Haut, Körperteile oder Szenen erkennen können. Mithilfe von entsprechenden Datensätzen [1] lassen sich Klassifizierungs- und Objekterkennungsmodelle trainieren. Es gibt allerdings auch Bilder, welche offensichtlicht erotisch oder pornografisch sind, welche aber durch herkömmliche Methoden nicht erkannt werden können. Dies trifft z.B. auf Personen in hautenger Latex- oder Lederbekleidung zu. Existierende Ansätze im Bereich des "Human Parsing" können personen und deren Kleidung bereits gut segmentieren. Außerdem existieren Datasets wie Fashionpedia [2], welche Segmentierungsmasken und Labels für Kleidungsstücke beinhalten.
Ziel:
Ziel dieser Masterarbeit ist es zu untersuchen, ob und in welchem Umfang Kleidungsstücke zur Erkennung von erotischem und pornografischem Bildmaterial genutzt werden können. Zunächst soll recherchiert werden, welche bereits existierenden Ansätze sich zur Bearbeitung der Fragestellung eignen. Lücken in bestehenden Datensätzen und Modellen sollen beschrieben und durch eigene Daten und Modelle geschlossen werden. Auf Basis der entwickelten Methoden soll anschließend evaluiert werden, (1) ob eine zuverlässige Erkennung erotischer Kleidung möglich ist und (2) ob sich erotische und pornografische Bilder anhand erkannter Kleidung von anderen Kategorien abgrenzen lassen. Hierbei sollen auf unterschiedliche Gegenklassen evaluiert werden, wie z.B. Alltags-, Sport oder Strandbilder.
Ergebnisse:
Als Teil dieser Masterarbeit sollen die folgenden Ergebnisse erzielt werden:
- Datensatz mit Annotationen für die Erkennung erotischer Kleidung.
- Implementierung neuer Ansätze zur Erkennung und Segmentierung von erotischen Kleidungsstücken.
- Klassifizierung der gefundenen Kleidungsstücke.
- Evaluierung der Modelle, sowohl bezogen auf Objekterkennung/Segmentierung als auch Klassifizierung (pornografisch/erotisch/normal).
Hier sorgst Du für Veränderung
- Aufbau eines Datensatzes zur Objekterkennung bzw. Segmentierung.
- Nutzung vortrainierter state-of-the-art Modelle wie SAM 3, um Annotationen zu generieren.
- Training von Modellen wie YOLO, RT-DETR, Mask R-CNN.
- Analyse existierender Datensätze hinsichtlich der vorkommenden Kleidung.
- Evaluierung der trainierten Modelle auf geeigneten Datensätzen.
Hiermit bringst Du Dich ein
- Gute Kenntnisse im Bereich Machine Learning und dem Training neuronaler Netze.
- Gute Python-Kenntnisse, vorzugsweise erste Erfahrung mit PyTorch.
- Idealerweise Kenntnisse in Computer-Vision und Objekterkennung/Segmentierung.
- Motivation, sich eigenständig in neue und aktuelle Forschungsthemen einzuarbeiten.
- Bereitschaft mit erotischem oder pornografischem Bildmaterial zu arbeiten.
- Interesse an wissenschaftlicher Forschung.
Was wir für Dich bereithalten
- Selbstständige Arbeitszeiteinteilung
- Einblicke in das Schnittfeld von akademischer Forschung und industrieller Anwendung.
Verwandte Arbeiten:
[1] Phan, D. D. et al., LSPD: A Large-Scale Pornographic Dataset for Detection and Classification —
[2] Jia, M. et al., Fashionpedia: Ontology, Segmentation, and an Attribute Localization Dataset —
Wir wertschätzen und fördern die Vielfalt der Kompetenzen unserer Mitarbeitenden und begrüßen daher alle Bewerbungen – unabhängig von Alter, Geschlecht, Nationalität, ethnischer und sozialer Herkunft, Religion, Weltanschauung, Behinderung sowie sexueller Orientierung und Identität. Schwerbehinderte Menschen werden bei gleicher Eignung bevorzugt eingestellt. Unsere Aufgaben sind vielfältig und anpassbar – für Bewerber*innen mit Behinderung finden wir gemeinsam Lösungen, die ihre Fähigkeiten optimal fördern.
Mit ihrer Fokussierung auf zukunftsrelevante Schlüsseltechnologien sowie auf die Verwertung der Ergebnisse in Wirtschaft und Industrie spielt die Fraunhofer-Gesellschaft eine zentrale Rolle im Innovationsprozess. Als Wegweiser und Impulsgeber für innovative Entwicklungen und wissenschaftliche Exzellenz wirkt sie mit an der Gestaltung unserer Gesellschaft und unserer Zukunft.
Bereit für Veränderung? Dann bewirb Dich jetzt, und mach einen Unterschied! Nach Eingang Deiner Online-Bewerbung erhältst Du eine automatische Empfangsbestätigung. Dann melden wir uns schnellstmöglich und sagen Dir, wie es weitergeht.
Fraunhofer-Institut für Sichere Informationstechnologie SIT
Kennziffer: 82692 Bewerbungsfrist: