Abstand Gerade Ebene
Du fragst dich, wie du den Abstand von Gerade und Ebene berechnen kannst? Hier und in unsere Video erfährst du alles Wichtige dazu.
Inhaltsübersicht
Abstand Gerade Ebene einfach erklärt
Der Abstand von zwei Objekten im Raum ist immer die kürzeste Entfernung zwischen ihnen. Deshalb kann der Abstand zwischen Gerade und Ebene drei Fälle haben:
- Fall 1: Gerade g und Ebene E schneiden sich = der Abstand ist 0
- Fall 2: Gerade g und Ebene E sind parallel, aber g liegt in E = der Abstand ist 0
- Fall 3: Gerade g und Ebene E sind parallel, aber g liegt nicht in E = Abstand ist nicht 0
Den Abstand zwischen Gerade und Ebene kannst du nur berechnen, wenn beide Parallel zueinander sind :
Du berechnest dabei den Abstand zwischen der Ebene E zu einem beliebigen Punkt auf der Geraden g. Das machst du mit der Hesseschen Normalform .
Berechnung: Schritt für Schritt
Zur Berechnung sind eine Ebene E in Normalform und eine Gerade g gegeben:
E: x1 + x2 – 2x3 = 4
g = = + r ·
Zur Berechnung des Abstands wählst du jetzt einen beliebigen Punkt auf der Geraden aus. Dazu eignet sich meistens der Stützpunkt der Geraden. Hier ist es P (0 | 0 | 1), den du jetzt in die Formel einsetzt:
Hessesche Normalform:
d(g; E) = d(P; E)=
➔ Die Gerade hat also von der Ebene den Abstand 1
Abstand Gerade Ebene berechnen
Beispiel 1:
- Es sind wieder eine Ebene G und die Gerade k gegeben:
k = = + r ·
G: x3 = 0
- Untersuche vor der Berechnung die Parallelität der Ebene und der Geraden. Dazu multiplizierst du den Richtungsvektor der Geraden mit dem Normalenvektor der Ebene
· = 0 · 1 + 1 · 0 + 0 · 1 = 0 ✅
- Zuletzt rechnest du mithilfe der Hesseschen Normalform den Abstand aus. Dazu wählst du einen beliebigen Punkt auf der Geraden und setzt ihn in die Formel ein. Hier eignet sich der Stützpunkt der Geraden P (5 | 3 | 4).
d(k; G) = d(P; G) = = 4
➔ Der Abstand von der Gerade k zu der Ebene G ist also 4.
Beispiel 2:
- Es sind eine Ebene F und eine Gerade h gegeben. Die Ebene ist hier aber zuerst in Parameterform angegeben.
h: = + r ·
F: = + r · + s ·
-
Forme sie also zuerst in die Koordinatenform um:
- Normalenvektor = x =
- Also lautet der Ansatz für die Koordinatenform: F = -4x1 + 32x2 -20x3 = d
- Um d zu berechnen, setzt du noch den Stützpunkt P (0 | 0 | 0) in die Ebene ein:
(-4) · 0 + 32 · 0 +(-20) · 0 = 0
- Jetzt kannst du die Parallelität der Ebene und der Geraden untersuchen:
· = (-4) · 2 + 32 · 4 + (-20) · 6 = -8 + 128 -120 = 0 ✅
- Zuletzt bestimmst du den Abstand zu einem beliebigen Punkt, beispielsweise
P (1 | 2 | 3)
d(g; E) = d(P; E) = = 0
➔ Aus dem Ergebnis d = 0 kannst du schließen, dass die Gerade h in der Ebene F liegt.
- Achte darauf, dass du vor der Berechnung die Gerade in Parameterform und die Ebene in Koordinatenform vorliegen hast.
- Untersuche zuerst, ob die Ebene und die Gerade wirklich parallel zueinander sind. Wenn das nicht der Fall ist, schneiden sich die Beiden an einem Punkt und der Abstand ist automatisch 0.
- Zuletzt berechnest du den Abstand von einem Punkt auf der Geraden zu der Ebene. Dazu brauchst du die Hessesche Normalform.
Übrigens: Alternativ kannst du den Abstand auch mit dem Lotfußpunktverfahren berechnen. Mehr dazu erfährst du hier !
Abstand Gerade Gerade
Prima! Du kannst den Abstand zwischen Ebene und Gerade berechnen! Willst du jetzt auch noch den Abstand zwischen Gerade und Gerade berechnen können? Schau dazu gleich in unser Video rein!