Statistik Wahrscheinlichkeit

Bernoulliverteilung

Du suchst nach einer kurzen Zusammenfassung der wichtigsten Eigenschaften der Bernoulliverteilung? Dann bist du hier genau richtig!

Bernoulliverteilung: Ein Zufallsexperiment mit zwei möglichen Ausgängen

Die Bernoulliverteilung beschreibt ein Zufallsexperiment, bei dem es nur zwei mögliche Ausgänge gibt. Meistens wird ein mögliches Ergebnis als „Erfolg“ bezeichnet und das andere als „Misserfolg“. Die Wahrscheinlichkeit für einen Erfolg wird durch den Buchstaben p beschrieben, die für einen Misserfolg mit dem Buchstaben q. Die Wahrscheinlichkeit für einen Misserfolg berechnet sich dabei einfach als Gegenwahrscheinlichkeit für einen Erfolg, also q=1-p. Mathematisch drückt man eine bernoulli-verteilte Zufallsvariable wie folgt aus:

X~B\left(p\right)

Ein klassisches Beispiel für eine Bernoulliverteilung ist das Werfen einer Münze. Hier kann man beispielsweise „Kopf“ als Erfolg festlegen und „Zahl“ als Misserfolg. Das Resultat Kopf wird dann durch den Wert 1 beschrieben und das Resultat Zahl durch den Wert 0. Die Menge der möglichen Ergebnisse, auch Träger genannt, besteht also nur aus 0 und 1.

\tau={0,1}

Dichtefunktion der Bernoulliverteilung

Somit können wir jetzt auch ganz einfach die Dichtefunktion der Bernoulliverteilung bestimmen. Wir erinnern uns, dass die Dichtefunktion jedem Ergebnis eine passende Wahrscheinlichkeit zuordnet. Die Wahrscheinlichkeit, dass du Kopf beziehungsweise Zahl wirfst ist jeweils 0,5. Die Wahrscheinlichkeit für andere Ergebnisse ist gleich null. Unsere Dichtefunktion ist also dreigeteilt und sieht wie folgt aus:

Dichtefunktion Bernoulliverteilung
Dichtefunktion

Falls du noch Fragen zur Dichtefunktion hast, schau dir doch unser passendes Video dazu an.

Verteilungsfunktion der Bernoulliverteilung

Schauen wir uns als nächstes noch die Verteilungsfunktion der Bernoulliverteilung an. Die Verteilungsfunktion gibt für jeden Wert an, mit welcher Wahrscheinlichkeit ein Ergebnis kleiner gleich diesem Wert eintritt. Für die Bernoulli-Verteilung ist diese wieder dreigeteilt und sieht wie folgt aus:

Verteilungsfunktion Bernoulliverteilung
Verteilungsfunktion

Der oberste Abschnitt beschreibt die Wahrscheinlichkeit, dass die Zufallsvariable einen Wert kleiner als 0 annimmt. Da in unserem Beispiel aber nur die beiden Werte 0 und 1 herauskommen können, ist die Wahrscheinlichkeit für einen Wert kleiner 0 gleich 0. Die zweite Stufe beschreibt den Bereich zwischen 0 und 1. Dabei ist die 0 noch in dem Bereich enthalten, die 1 aber nicht! Da in diesem Bereich also nur die 0 ein mögliches Ergebnis ist, ist die Wahrscheinlichkeit eine Zahl kleiner gleich 0 zu erzielen, genau die Wahrscheinlichkeit die Zahl 0 zu erzielen, also 0,5. Der dritte Abschnitt beschreibt schließlich den Bereich für Ergebnisse größer gleich 1. Da in unserem einfachen Bernoulli-Experiment nur die Werte 0 und 1 herauskommen können, ist die Wahrscheinlichkeit z.B. einen Wert kleiner gleich 5 zu erhalten 1. Genauso ist die Wahrscheinlichkeit einen Wert kleiner gleich 100 zu erhalten 1. Die Funktion geht also konstant mit dem Wert 1 weiter.

Erwartungswert und Varianz

Prima, die Dichte- und die Verteilungsfunktion haben wir schon geschafft! Jetzt schauen wir uns noch die Formel für den Erwartungswert und die Varianz an. Der Erwartungswert der Bernoulliverteilung lässt sich ganz einfach berechnen. Er entspricht einfach der Wahrscheinlichkeit für einen Erfolg, also p. In unserem Fall wäre der Erwartungswert also gleich 0,5.

E(x)=p

Die Formel für die Varianz sieht so aus:

V(X)= p(1-p)

Diese Formel lässt sich aus der allgemeinen Formel für die Berechnung der Varianz im diskreten Fall herleiten, das ersparen wir dir aber jetzt. Am besten merkst du dir die Formel einfach oder schreibst sie dir in deine Formelsammlung.
So, das war auch schon alles Wichtige, was du zur Bernoulli-Verteilung wissen musst! Hier siehst du noch einmal die wichtigsten Formeln im Überblick:

Formeln Bernoulliverteilung
Überblick Formeln

Hallo, leider nutzt du einen AdBlocker.

Auf Studyflix bieten wir dir kostenlos hochwertige Bildung an. Dies können wir nur durch die Unterstützung unserer Werbepartner tun.

Schalte bitte deinen Adblocker für Studyflix aus oder füge uns zu deinen Ausnahmen hinzu. Das tut dir nicht weh und hilft uns weiter.

Danke!
Dein Studyflix-Team

Wenn du nicht weißt, wie du deinen Adblocker deaktivierst oder Studyflix zu den Ausnahmen hinzufügst, findest du hier eine kurze Anleitung. Bitte lade anschließend die Seite neu.