Mikroökonomie

Nutzenfunktion und Indifferenzkurven

Du hast die Begriffe Nutzenfunktion und Indifferenzkurven gehört, bist dir aber nicht mehr ganz sicher, was diese bedeuten. Dann bist du genau richtig hier. Im folgenden Beitrag erklären wir dir die Begriffe Nutzenfunktion und Indifferenzkurve und gehen dabei auf ihre besonderen Erscheinungsformen ein.

Nutzenfunktion und Indifferenzkurve: Perfekte Substitute, perfekte Komplemente und imperfekte Substitute

Beginnen wir zunächst mit der allgemeinen Bedeutung von Nutzenfunktionen und Indifferenzkurven. Die Nutzenfunktion wird in der Volkswirtschaft verwendet, um die Präferenzen der Wirtschaftssubjekte darzustellen. Im Grunde beschreibt sie also, ob und in welchem Ausmaß du ein Gut lieber konsumierst als das andere.

Indiffernzkurve Nutzenfunktion
Beispiel Indiffernzkurve

Da könnte also z.B. stehen, dass du für jedes Bier, das du trinkst, gerne zwei Burger verdrücken würdest. Deine Präferenz wäre also zwei Burger für ein Bier. Wenn Du die Nutzenfunktion umstellst, hast Du meist auch schon die passende Indifferenzkurve – dazu aber gleich mehr.

Indifferenzkurve Definition

Die Indifferenzkurve wird auch häufig als Iso-Nutzenfunktion, Iso-Nutzenkurve oder Nutzen-Isoquante bezeichnet. Sie stellt dar, welche Güter- Mengen -Kombinationen Dir den gleichen Nutzen bringen. Auf einer Indifferenzkurve bleibt das Nutzenniveau also immer gleich. Wenn Du Dich auf einer Indifferenzkurve entlang bewegst, ändert sich zwar die Kombination Deiner Güter, aber nicht Dein Nutzenniveau. Je weiter die Indifferenzkurve vom Ursprung entfernt ist, desto höher ist dein Nutzen.

Veränderung der Indifferenzkurve bei höherem Nutzen
Veränderung der Indifferenzkurve bei höherem Nutzen

Nutzenfunktion Beispiele: Perfekte Substitute

Insgesamt gibt es drei Typen von Nutzenfunktionen und ihren dazugehörigen Indifferenzkurven: perfekte Substitute, perfekte Komplemente und imperfekte Substitute.

Als erstes nehmen wir uns die Nutzenfunktion der perfekten Substitute vor. Die wichtigste Eigenschaft der perfekten Substitute ist, dass sie beliebig miteinander austauschbar sind. Als Beispiel kann man hier rote und grüne Äpfel nehmen. Beide bringen Dir den gleichen Nutzen, egal ob der Apfel nun rot oder grün ist. Die Nutzenfunktion lautet hier:

u\left(x_1,x_2\right)=a{*x}_1+\ {b*x}_2

Perfekte Substitute sind also immer additiv miteinander verbunden. Wenn Du das Ganze dann nach x_2 umstellst, hast Du auch schon die passende Indifferenzkurve. Das U mit dem Strich darüber bedeutet einfach, dass hier der Nutzen festgesetzt bzw. konstant ist. Die Steigung -\frac{a}{b} repräsentiert das Austauschverhältnis der beiden Güter.

Graphisch sieht die Ntzenfunktion dann so aus:

Nutzenfunktion perfekte Substitute
Perfekte Substitute

Du siehst bestimmt schon, dass sich das Nutzenniveau auf der Geraden nicht ändert, egal ob du jetzt mehr rote x_1 oder grüne x_2 Äpfel hast.

Perfekte Komplemente

Weiter geht’s mit den perfekten Komplementen. Wie der Namen eigentlich schon verrät, vervollständigen sich hier beide Güter. Wenn Du Dir das anhand Drucker x_1 und Druckerpatrone x_2 vor Augen führst, verstehst Du die Bedeutung vielleicht schon besser. Sowohl der Drucker als auch die Patrone bringen Dir alleine nichts, da sie sich in ihrem Nutzen ergänzen. Die Nutzenfunktion für perfekte Komplemente ist eine sogenannte Minimum- Funktion und lautet:

\ u\left(x_1,x_2\right)=min\left\{ax_1,bx}_2\right\}

Sie heißt deswegen Minimum-Funktion, da jedes Komplement ein Gegenstück braucht. Dir nutzt es also nichts, wenn du nur einen Drucker, aber dafür 20 Patronen hast. Das bedeutet, Dein Nutzen besteht dann nur aus einem Drucker und einer Patrone. Die restlichen 19 Patronen bringen Dir – zumindest im Augenblick – nichts.

Da hier die Indifferenzkurven nicht explizit darstellbar sind, werden die Mengen der beiden Güter stets im Verhältnis x_2=\frac{a}{b}x_1 miteinander kombiniert. Das kannst Du Dir also leider nicht rechnerisch herleiten, sondern musst es Dir einfach merken. Aber das ist ja zum Glück keine so komplizierte Gleichung! Graphisch kann die Nutzenfunktion dann so aussehen:

Nutzenfunktion Perfekte Komplemente
Perfekte Komplemente

Auf der gepunkteten Linie hast du also von jedem Gut genau gleich viel. Sobald Du von z.B. Patronen x_2  mehr als von Druckern x_1  hast, bewegst Du Dich zwar auf der Indifferenzkurve nach oben, Du verlässt sie aber nicht. Dein Nutzenniveau bleibt also gleich.

Indifferenzkurve berechnen: Imperfekte Substitute

So, jetzt sind wir auch schon bei der letzten Nutzenfunktion angelangt! Das sind die imperfekten Substitute. Bei ihnen handelt es sich um Güter, die einen ähnlichen Nutzen bringen, sich aber in Preis, Qualität oder anderen Merkmalen unterscheiden. Gute Beispiele wären etwa normale und elektronische Bücher, sogenannte E-Books. Beide kannst du lesen, aber vielleicht bevorzugst du auf Papier zu lesen, weil der Akku in deinem Tablet ständig leer geht.

Die gängigste Form für imperfekte Substitute ist die Cobb-Douglas-Funktion, die durch die folgende Gleichung dargestellt wird:

\ u\left(x_1,x_2\right)=\ {x_1}^\alpha\ast{x_2}^\beta

Eine wichtige Eigenschaft von Cobb-Douglas-Funktionen ist, dass sich Alpha und Beta zu 1 addieren lassen. Ist Alpha gleich 0,3 muss bei einer Cobb-Douglas-Funktion Beta gleich 0,7 sein. Wenn Du das wiederum nach x_2 umstellst, hast Du hier auch schon wieder die zugehörige Indifferenzkurve:

x_2=\left(\frac{\bar{U}}{{x_1}^\alpha}\right)^\frac{1}{\beta}

Die Formel sieht jetzt vielleicht etwas kompliziert aus, aber du siehst, es ist nicht schwer eine Nutzenfunktion in eine Indifferenzkurve umzuschreiben. Zur Verdeutlichung haben wir auch hier wieder eine Graphik von der Nutzenfunktion für Dich:

Nutzenfunktion Imperfekte Substitute
Imperfekte Substitute

Du siehst sicher, dass es sich hier um keine lineare Funktion, sondern um eine Exponentialfunktion handelt. Mehr von Gut 1 bringt also einen zusätzlichen Nutzen, aber ersetzt Gut 2 nicht perfekt, so wie es bei den Äpfeln, den perfekten Substituten, war. Du kannst dir das so vorstellen: Du bekommst zu Weihnachten ein neues E-Book. Das freut dich zwar, aber ein Buch wäre dir lieber gewesen.

Zusammenfassung

Das war‘s auch schon wieder. Damit Du Dir das auch gut merken kannst, haben wir für Dich nochmal die wichtigsten Fakten zusammengefasst: In der Haushaltstheorie gibt es 3 verschiedene Nutzenfunktionen: Die erste ist die Nutzenfunktionen der perfekten Substituten. Sie repräsentiert Güter, deren Nutzen sich nicht unterscheiden und die austauschbar sind. Die zweite Form ist die der perfekten Komplemente, sie ergänzen sich, sind alleine aber nicht nutzbar. Die dritte und letzte Form ist die der imperfekten Substitute. Das sind Güter, die einen ähnlichen Nutzen haben, sich aber in bestimmten Merkmalen unterscheiden.

Jetzt weißt du also was Nutzenfunktionen sind und wie du sie schnell und einfach in Indifferenzkurven umformen kannst.

Hallo, leider nutzt du einen AdBlocker.

Auf Studyflix bieten wir dir kostenlos hochwertige Bildung an. Dies können wir nur durch die Unterstützung unserer Werbepartner tun.

Schalte bitte deinen Adblocker für Studyflix aus oder füge uns zu deinen Ausnahmen hinzu. Das tut dir nicht weh und hilft uns weiter.

Danke!
Dein Studyflix-Team

Wenn du nicht weißt, wie du deinen Adblocker deaktivierst oder Studyflix zu den Ausnahmen hinzufügst, findest du hier eine kurze Anleitung. Bitte lade anschließend die Seite neu.