zur Suche

Masterarbeit: LLM-gestützte Autorschaftsverifikation

Jetzt bewerben

Stellenbeschreibung

Abschlussarbeit
Homeoffice: Nach Absprache

Das Fraunhofer-Institut für Sichere Informationstechnologie SIT gehört zu den führenden Forschungs- und Entwicklungseinrichtungen für Cyber-Sicherheit in Deutschland und Europa und ist Teil von ATHENE, dem nationalen Forschungszentrum für angewandte Cybersicherheit. ATHENE ist eine Kooperation der Fraunhofer-Gesellschaft mit der TU Darmstadt, der Hochschule Darmstadt und der Goethe-Universität Frankfurt. Unser gemeinsames Ziel: die Welt von morgen sicherer zu machen.

Was Du bei uns tust

Autorschaftsverifikation (AV) ist ein zentraler Forschungszweig der digitalen Textforensik und befasst sich mit der Frage, ob zwei oder mehr Texte von derselben Person verfasst wurden. AV bietet zahlreiche Anwendungen sowohl innerhalb als auch außerhalb der Forensik. Ein prominentes Beispiel ist die Überprüfung (Verifikation), ob Beiträge von verschiedenen Accounts von derselben Person stammen, was besonders relevant ist, wenn strafbare Inhalte wie Hassrede oder Desinformationen verbreitet werden.

Das Ziel dieser Masterarbeit ist es, eine neue AV-Methode zu erforschen und zu entwickeln, die speziell auf solche Anwendungsfälle ausgerichtet ist. Dabei soll die Methode auf modernen Large Language Models (LLMs) basieren und deren Fähigkeit nutzen, feingranulare Merkmale aus Texten zu extrahieren. Diese Merkmale könnten beispielsweise Stilfiguren, Syntaxfehler oder Satzkonstituenten umfassen – Merkmale, die mit bisherigen NLP-Tools nur eingeschränkt oder gar nicht extrahiert werden konnten. Die extrahierten Merkmale sollen im Vergleich zu traditionellen Merkmalen in der AV (z.B. Zeichen-n-Gramme, Funktionswörter etc.) bewertet und, falls sinnvoll, durch diese ergänzt werden. Zusätzlich sollen mithilfe eines oder mehrerer LLMs Stilbeschreibungen der analysierten Texte erstellt werden. Dabei gilt es zu erforschen, wie sich diese Stilbeschreibungen in die AV-Methode integrieren lassen, um die Klassifikation zu verbessern.

Im Rahmen einer umfassenden Evaluierung soll die entwickelte AV-Methode abschließend mit bestehenden Verfahren verglichen und hinsichtlich verschiedener Parameter wie Genauigkeit, Robustheit und Anwendungsbreite beurteilt werden.

Was Du mitbringst

  • Studienhintergrund in Informatik, Computational Linguistics, Data Science oder einem vergleichbaren Bereich
  • Erfahrungen mit NLP und modernen LLMs, sowie Kenntnisse zu aktuellen Methoden und Verfahren im Bereich des maschinellen Lernens und Deep Learnings
  • Programmierkenntnisse in Python und vertrauter Umgang mit gängigen ML/NLP-Frameworks 

Was Du erwarten kannst

  • Selbstständige Arbeitszeiteinteilung
  • Einblicke in das Schnittfeld von akademischer Forschung und industrieller Anwendung

Wir wertschätzen und fördern die Vielfalt der Kompetenzen unserer Mitarbeitenden und begrüßen daher alle Bewerbungen – unabhängig von Alter, Geschlecht, Nationalität, ethnischer und sozialer Herkunft, Religion, Weltanschauung, Behinderung sowie sexueller Orientierung und Identität. Schwerbehinderte Menschen werden bei gleicher Eignung bevorzugt eingestellt.

Mit ihrer Fokussierung auf zukunftsrelevante Schlüsseltechnologien sowie auf die Verwertung der Ergebnisse in Wirtschaft und Industrie spielt die Fraunhofer-Gesellschaft eine zentrale Rolle im Innovationsprozess. Als Wegweiser und Impulsgeber für innovative Entwicklungen und wissenschaftliche Exzellenz wirkt sie mit an der Gestaltung unserer Gesellschaft und unserer Zukunft. 

Haben wir Dein Interesse geweckt? Dann bewirb Dich jetzt online mit Deinen aussagekräftigen Bewerbungsunterlagen. Wir freuen uns darauf, Dich kennenzulernen! 

Fraunhofer-Institut für Sichere Informationstechnologie SIT

Kennziffer: 76736                Bewerbungsfrist: 

  Anstellungsart
Abschlussarbeit
  Homeoffice
Nach Absprache

Hallo, leider nutzt du einen AdBlocker.

Auf Studyflix bieten wir dir kostenlos hochwertige Bildung an. Dies können wir nur durch die Unterstützung unserer Werbepartner tun.

Schalte bitte deinen Adblocker für Studyflix aus oder füge uns zu deinen Ausnahmen hinzu. Das tut dir nicht weh und hilft uns weiter.

Danke!
Dein Studyflix-Team

Wenn du nicht weißt, wie du deinen Adblocker deaktivierst oder Studyflix zu den Ausnahmen hinzufügst, findest du hier eine kurze Anleitung. Bitte .