Video
Quiz

Teste dein Wissen zum Thema Asymptote!

Du möchtest wissen, wie du Asymptoten berechnest? In diesem Artikel erklären wir es dir, anhand von Beispielen.

Quiz zum Thema Asymptote
Inhaltsübersicht

Arten von Asymptoten

Um die Asymptote einer Funktion zu berechnen, musst du zuerst wissen, welche Art von Asymptote die Funktion hat. Insgesamt gibt es vier Arten von Asymptoten. Du unterscheidest sie anhand des Grads des Zählers und des Nenners der Funktion.

Art der Asymptote Beschreibung Wann tritt sie auf?
Waagrechte Asymptote
asymptoten berechnen, schräge asymptote berechnen, senkrechte asymptoten berechnen, waagrechte asymptote berechnen, gleichung der asymptote, asymptoten bestimmen, waagrechte asymptote bestimmten, asymptote bestimmen
direkt ins Video springen
Beispiel waagrechte Asymptote
Wenn der Grad des Zählers kleiner oder gleich dem Grad des Nenners ist: Z ≤ N
Senkrechte Asymptote
asymptoten berechnen, schräge asymptote berechnen, senkrechte asymptoten berechnen, waagrechte asymptote berechnen, gleichung der asymptote, asymptoten bestimmen, waagrechte asymptote bestimmten, asymptote bestimmen
direkt ins Video springen
Beispiel senkrechte Asymptote
Wenn der Nenner einer Funktion Null werden kann.
Schiefe Asymptote
asymptoten berechnen, schräge asymptote berechnen, senkrechte asymptoten berechnen, waagrechte asymptote berechnen, gleichung der asymptote, asymptoten bestimmen, waagrechte asymptote bestimmten, asymptote bestimmen
direkt ins Video springen
Beispiel schiefe Asymptote
Wenn der Grad des Zählers um genau eins größer ist als der des Nenners: Z = N+1
Kurvenförmige Asymptote
asymptoten berechnen, schräge asymptote berechnen, senkrechte asymptoten berechnen, waagrechte asymptote berechnen, gleichung der asymptote, asymptoten bestimmen, waagrechte asymptote bestimmten, asymptote bestimmen
direkt ins Video springen
Beispiel kurvenförmige Asymptote
Wenn der Grad des Zählers um mehr als eins größer ist als der des Nenners: Z > N+1

Jede dieser Asymptoten hat bestimmte Eigenschaften und ihre eigene Berechnungsmethode. Sie helfen dir jedoch, alle das Verhalten der Funktion zu verstehen und zu interpretieren.

Waagrechte Asymptote berechnen

Eine waagrechte Asymptote entspricht einer waagrechten Geraden im Koordinatensystem. Dadurch ist sie parallel zur x-Achse. Ihre Höhe kannst du durch Berechnen ermitteln.

asymptoten berechnen, schräge asymptote berechnen, senkrechte asymptoten berechnen, waagrechte asymptote berechnen, gleichung der asymptote, asymptoten bestimmen, waagrechte asymptote bestimmten, asymptote bestimmen
direkt ins Video springen
Waagrechte Asymptote

Kurzanleitung:

Um eine waagrechte Asymptote zu berechnen, musst du den Grad des Zählers und des Nenners vergleichen. Dabei gibt es zwei Möglichkeiten:

  • Zählergrad < Nennergrad: die Funktion geht gegen 0 und die waagrechte Asymptote ist y = 0.
  • Zählergrad = Nennergrad: das Verhältnis der führenden Koeffizienten entspricht der Asymptote.

Waagrechte Asymptote — Beispiel

Wenn der Zählergrad gleich dem Nennergrad ist, berechnest du die Asymptote wie folgt: 

  1. Bestimme den Grad des Zählers und des Nenners: Im ersten Schritt suchst du die höchste Potenz von x im Zähler und Nenner.
    • Beispiel: \frac{2\textcolor{green}{x^2} + 3}{1\textcolor{blue}{x^2} - 5}
    • Hier ist die höchste Potenz des Zählers 2 und die des Nenners ebenfalls 2. Somit ist der Zählergrad gleich dem Nennergrad.
       
  2. Bestimme das Verhältnis der Koeffizienten: Um nun auf die Asymptote zu kommen, dividierst du die Koeffizienten vor der gemeinsamen höchsten Potenz.
    • Dafür schaust du dir in unserem Beispiel die Zahlen vor dem x mit der höchsten Potenz an.
      \frac{\textcolor{purple}{2}x^2 + 3}{\textcolor{purple}{1}x^2 - 5}
    • Der Koeffizient des Zählers ist 2 und der des Nenners 1.
    • Daraus berechnest du nun die Asymptote, indem du den Koeffizienten des Zählers durch den des Nenners teilst:
      \frac{2}{1}=2
    • Das Ergebnis entspricht unserer Asymptotengleichung. Im Beispiel haben wir also eine waagrechte Asymptote bei y = 2.

Übrigens: Die e-Funktion ex nähert sich asymptotisch der waagrechten Linie y = 0

Senkrechte Asymptote berechnen

asymptoten berechnen, schräge asymptote berechnen, senkrechte asymptoten berechnen, waagrechte asymptote berechnen, gleichung der asymptote, asymptoten bestimmen, waagrechte asymptote bestimmten, asymptote bestimmen
direkt ins Video springen
Senkrechte Asymptote

Senkrechte Asymptoten treten auf, wenn der Nenner einer Funktion Null werden kann. Denn da man nicht durch Null teilen darf, hat die Funktion für den entsprechenden x-Wert eine Definitionslücke. Das bedeutet, dass sich die x-Werte der Senkrechten immer weiter annähern, sie jedoch nie ganz berühren.

Kurzanleitung:

Um senkrechte Asymptoten zu berechnen, musst du die Nullstellen des Nenners bestimmen. Die Nullstellen entsprechen dann den senkrechten Asymptoten der Funktion.

Senkrechte Asymptote — Beispiel

  1. Setze den Nenner gleich Null: Schaue dir den Nenner der Funktion an.
    • Beispiel: \frac{1}{x - 3}
    • Setze den Nenner gleich Null: x − 3 = 0
       
  2. Löse die Gleichung: Bestimme die Werte von x, die die Gleichung erfüllen.
    • Ergebnis:
      x – 3 = 0     |+3
      x = 3
    • Für x = 3 wird der Nenner Null. Das bedeutet, dass die Funktion eine senkrechte Asymptote bei x = 3 hat.

Schiefe Asymptote berechnen

Schiefe Asymptoten entstehen, wenn der Grad des Zählers um genau eins höher ist als der des Nenners. Diese Asymptoten verlaufen schräg und geben dir Informationen über das lineare Wachstum der Funktion.

asymptoten berechnen, schräge asymptote berechnen, senkrechte asymptoten berechnen, waagrechte asymptote berechnen, gleichung der asymptote, asymptoten bestimmen, waagrechte asymptote bestimmten, asymptote bestimmen
direkt ins Video springen
Schiefe Asymptote

Kurzanleitung:

Um eine schiefe Asymptote zu berechnen, verwendest du die Polynomdivision. Dabei teilst du den Zähler durch den Nenner. Vom Ergebnis lässt du den Rest weg und erhältst dadurch die Gleichung der schiefen Asymptote.

Schiefe Asymptote — Beispiel

Führe die Polynomdivision durch

  • Beispiel: \frac{x^2 + x - 2 }{x + 3}
  • Teile den Zähler durch den Nenner: 

        \begin{align*} & (x^2 + x - 2) : (x + 3) = x - 2 + \frac{4}{x + 3} \\  & x^2 + 3x & & \\ & \underline{-(x^2 + 3x)} & & \\ & -2x - 2 & & \\ & \underline{-(-2x - 6)} & & \\ & 4 & &  \end{align*}

  • Ergebnis: (x^2 + x - 2) : ( x + 3) = x - 2 +  \frac{4}{x + 3}
  • Lässt du den Rest des Ergebnisses nun weg, bekommst du y = x – 2 als Gleichung für die die schiefe Asymptote.

Asymptotische Kurve berechnen

Asymptotische Kurven treten auf, wenn der Grad des Zählers um mehr als eins größer ist als der des Nenners. Dabei ergibt die Asymptote jedoch keine gerade Linie, sondern eine Kurve.

asymptoten berechnen, schräge asymptote berechnen, senkrechte asymptoten berechnen, waagrechte asymptote berechnen, gleichung der asymptote, asymptoten bestimmen, waagrechte asymptote bestimmten, asymptote bestimmen
direkt ins Video springen
Kurvenförmige Asymptote

Kurzanleitung:

Um asymptotische Kurven zu berechnen, verwendest du die Polynomdivision. Du gehst also wie bei der schiefen Asymptote vor. Jedoch bekommst du als Ergebnis keine lineare, sondern eine quadratische Gleichung.

kurvenförmige Asymptote — Beispiel

Führe die Polynomdivision durch:

  • Beispiel: \frac{x^3 + 3}{x -2}
  • Teile den den Zähler durch den Nenner:

        \begin{align*} & (x^3 + 3) : (x - 2) = x^2 + 2x + 4 \frac{11}{x - 2}\\ & \underline {x^3 - 2x^2} & & \\ & 2x^2     +3 & & \\ & \underline {2x^2 - 4x} & & \\ & 4x + 3v& & \\ & \underline {4x - 8} & & \\ & 11 & & \end{align*}

  • Ergebnis: (x^3+3) : (x-2) = x^2 + 2x + 4 + \frac{11}{x-20}
  • Ohne den Rest ergibt die Division die Gleichung y = x+ 1. Die  asymptotische Kurve ist also bei y = x+ 1.

Asymptote berechnen — Häufigste Fragen

  • Wie sieht die Gleichung einer Asymptote aus?
    Die Gleichung einer waagrechten und schiefen Asymptote sieht aus wie eine Geradengleichung. Sie hat die Form: y=mx+b. Dabei ist m die Steigung und b der Schnitt mit der y-Achse.
     
  • Wie berechne ich eine senkrechte Asymptote?
    Eine senkrechte Asymptote berechnest du, indem du schaust für welches x die Gleichung undefiniert ist. Also welches x du einsetzen musst, damit im Zähler Null steht.
     
  • Wie berechne ich eine schiefe Asymptote?
    Um eine schiefe Asymptote zu berechnen, teilst du den Zähler durch den Nenner mithilfe der Polynomdivision. Die Gleichung der Asymptote entspricht dem Ergebnis ohne den Rest.
Quiz zum Thema Asymptote

Kurvendiskussion

Jetzt weißt du, wie du Asymptoten bei verschiedenen Funktionen berechnest. Wenn du wissen willst, was innerhalb der Kurvendiskussion noch alles wichtig ist, schau dir hier unser Video dazu an.

Zum Video: Kurvendiskussion
Zum Video: Kurvendiskussion

Hallo, leider nutzt du einen AdBlocker.

Auf Studyflix bieten wir dir kostenlos hochwertige Bildung an. Dies können wir nur durch die Unterstützung unserer Werbepartner tun.

Schalte bitte deinen Adblocker für Studyflix aus oder füge uns zu deinen Ausnahmen hinzu. Das tut dir nicht weh und hilft uns weiter.

Danke!
Dein Studyflix-Team

Wenn du nicht weißt, wie du deinen Adblocker deaktivierst oder Studyflix zu den Ausnahmen hinzufügst, findest du hier eine kurze Anleitung. Bitte .