Mechanik: Dynamik

Drehmoment

Inhaltsübersicht

In diesem Beitrag zeigen wir dir, welche Formeln du für das Drehmoment brauchst und wie man diese an einem konkreten Beispiel anwendet!

Drehmoment Definition

Um das Drehmoment zu verstehen, solltest du bereits wissen was ein Hebel ist und das Hebelgesetz kennen. Deshalb wiederholen wir dieses nun kurz.

Das Hebelgesetz stammt von Archimedes und ist eine wichtige theoretische Grundlage für die Lehre der Mechanik. Es besagt, dass sich die Krafteinwirkung an einem Drehpunkt proportional zur Länge des Hebels erhöht. Es gibt einarmige Hebel, bei denen die Last und die Kraft an der gleichen Seite wirken und es gibt zweiarmige Hebel, bei denen die Last und die Kraft an den entgegengesetzten Seiten wirken.

Nun kommen wir zum Drehmoment. Wirkt auf einen Hebel eine Kraft, wird am Drehpunkt ein Drehmoment erzeugt. Das Drehmoment gibt also an, wie stark eine Kraft auf einen drehbar gelagerten Körper wirkt. Manchmal wird es auch als Drehkraft bezeichnet.

Drehmoment: Definition

Newtonmeter

Diese hat das Formelzeichen M und wird in Newtonmeter angegeben. 1 Newtonmeter ist dabei die Kraft, die auf einen Hebel von 1 Meter Länge bei einer Kraft von 1 Newton wirkt. Dabei muss der Hebelarm senkrecht zur Drehkraft stehen.

Achtung! Du solltest das Drehmoment aber auf gar keinen Fall mit der mechanischen Arbeit W verwechseln. Zwar haben beide die Einheit Newtonmeter, aber nur bei der Arbeit werden diese auch als Joule geschrieben. Der Unterschied besteht darin, dass bei der mechanischen Arbeit im Gegensatz zum Drehmoment Kräfte und Weg parallel zueinander liegen.  Die Größen können deswegen auch nicht ineinander umgerechnet werden.

Unterschied Drehmoment und mechanische Arbeit

Das Drehmoment berechnen

Die Formel für die Berechnung des Drehmomentes lautet:

M = r \cdot F

F ist die einwirkende Kraft in Newton und r die Länge des Hebelarms zum Drehpunkt in Meter.

Gleichgewicht Drehmoment

Auf drehbar gelagerten Körpern können mehrere Drehmomente gleichzeitig wirken. Soll sich ein Hebel im Gleichgewicht befinden, muss die Summe aller Drehmomente Null ergeben.

\sum M = 0

Das heißt, dass die linksdrehenden Drehmomente gleich den rechtsdrehenden Drehmomenten sein müssen.

Vorzeichenregelung der Momente

Um herauszufinden, ob das dabei Moment positiv oder negativ ist, kannst du folgende Regel anwenden:

Dreht sich das Moment gegen den Uhrzeigersinn, ist es positiv. Dreht es sich im Uhrzeigersinn ist es negativ. Du kannst versuchen, dir das mit einem fallenden Zeiger vorzustellen.

Eine weitere Möglichkeit, die Richtung der Momente festzustellen, ist die rechte Hand Regel.

Dabei wird aus Daumen, Zeigefinger und Mittelfinger ein rechtwinkliges Koordinatensystem gebildet. Der Daumen zeigt dabei in Richtung des Kraftangriffspunktes, der Zeigefinger zeigt in Richtung der wirkenden Kraft F und der Mittelfinger zeigt nun in Richtung des Drehmoments. Zeigt der Mittelfinger in das Blatt hinein, also von dir weg, ist das Drehmoment positiv, zeigt er zu dir hin, ist es negativ.

Drehmoment: Vorzeichenregelung

Hebelgesetz – Beispiel

Testen wir unser Wissen doch noch einmal anhand eines Beispiels.

Ein Drehkran wird mit einer Last F_m von 10 Kilonewton belastet. Des Weiteren wirken sein Eigengewicht F_E mit 13 Kilonewton bei einem Meter, und ein Gegengewicht F_G mit 16 Kilonewton am kürzeren Ende auf den Kran ein. Die Reichweite des Krans beträgt dabei 6 Meter. Das Gegengewicht befindet sich in 2,5 Metern Entfernung. Bestimmen wir nun das Drehmoment in Punkt A.

Drehmoment: Berechnung anhand eines Drehkrans

Zunächst stellst du alle angreifenden Momente um den Drehpunkt A fest:

M_A = M_m \pm M_E \pm M_G

Im Anschluss ist es wichtig, dass du die Richtungen der Momente und damit auch die Vorzeichen herausfindest. Hierzu können wir die Regel mit der Uhr heranziehen.

Du bekommst für die Momente M_m und M_E ein negatives und für das Moment M_G ein positives Vorzeichen.

Jetzt setzen wir die Kräfte mit den zugehörigen Hebelarmen und Vorzeichen in die Formel ein und erhalten:

M_A = -F_m \cdot l_1 - F_E \cdot l_2 + F_G \cdot l_3

M_A = -10kN \cdot 6m - 13kN \cdot 1m + 16kN \cdot 2,5m = -33kNm

Für das Drehmoment in Punkt A ergibt sich damit minus 33 Kilonewtonmeter!

Sehr schön! Jetzt weißt du was das Drehmoment bedeutet, wie du es berechnest und wie du es dir zu Nutze machen kannst.

 

Hallo, leider nutzt du einen AdBlocker.

Auf Studyflix bieten wir dir kostenlos hochwertige Bildung an. Dies können wir nur durch die Unterstützung unserer Werbepartner tun.

Schalte bitte deinen Adblocker für Studyflix aus oder füge uns zu deinen Ausnahmen hinzu. Das tut dir nicht weh und hilft uns weiter.

Danke!
Dein Studyflix-Team

Wenn du nicht weißt, wie du deinen Adblocker deaktivierst oder Studyflix zu den Ausnahmen hinzufügst, findest du hier eine kurze Anleitung. Bitte lade anschließend die Seite neu.