Mechanik
Bewegungen Grundlagen
 – Video

Weg-Zeit-Diagramm einfach erklärt

Ein Körper, der sich bewegt, legt in einer bestimmten Zeit einen bestimmten Weg zurück. Ein Auto kann zum Beispiel in einer Stunde einen Weg von 50 Kilometern zurücklegen. In einem Weg-Zeit-Diagramm kannst du so eine Bewegung in einem Koordinatensystem darstellen. Es zeigt dir den Zusammenhang zwischen dem zurückgelegten Weg und der dabei vergangenen Zeit in Form eines Graphen.

Auf der waagerechten x-Achse befindet sich die Zeit t und auf der senkrechten y-Achse der Weg s. Deswegen heißt das Weg-Zeit-Diagramm auch s-t-Diagramm%<img class="n3VNCb" src="https://www.geogebra.org/resource/bjnmqwwj/8IkPTS0p8winX5qy/material-bjnmqwwj.png" alt="HPG Physik gleichmäßig beschleunigte Bewegung - GeoGebra" width="372" height="197" data-noaft="1" /> % <strong>Titel:</strong> Weg-Zeit-Diagramm, <strong>Grafik 1:</strong> Die x-Achse mit "Zeit <em>t",</em> die y-Achse mit "Weg <em>s</em>" beschriften. Skalierungen müssen nicht sichtbar sein. Bitte eine Gerade und eine Parabel einzeichnen. (Ungefähr so wie in dem Bild unten). <strong>Alt-Text:</strong> s-t-Diagramm, t-s-Diagramm, Weg-Zeit-Diagramm, Weg Zeit Gesetz, st Diagramm, Zeitdiagramm, Gleichförmige Bewegung, Zeit Weg Diagramm %Ich würde das hier in zwei Diagramme aufteilen. Sonst könnte man meinen, dass ein solches Diagramm immer aus so 2 Funktionen besteht. Also bitte ein Diagramm mit der roten Funktion und daneben ein Diagramm mit der grünen Funktion machen. Beschriftung dann: "Typische Weg-Zeit-Diagramme"

s-t-Diagramm, t-s-Diagramm, Weg-Zeit-Diagramm, Weg Zeit Gesetz, st Diagramm, Zeitdiagramm, Gleichförmige Bewegung, Zeit Weg Diagramm
direkt ins Video springen
Typische Weg-Zeit-Diagramme

Bewegt sich der Körper mit konstanter Geschwindigkeit, ist der Graph eine Gerade. Bewegt sich der Körper hingegen mit konstanter Beschleunigung, ist der Graph eine Parabel. Die Steigung des Graphen ergibt die Geschwindigkeit v, mit der sich der Körper fortbewegt.

Weg-Zeit-Diagramm verstehen

Wenn sich ein Körper bewegt, legt er einen bestimmten Weg s in einer bestimmter Zeit t zurück. Stelle dir ein Auto vor, das eine Straße entlang fährt. Du misst jede Stunde, wie viele Kilometer das Auto zurückgelegt hat: 

Zeit t 1 h 2 h 3 h 4 h 5 h
Weg s 50 km 100 km 150 km 200 km 250 km

Diese Punkte trägst du in ein Koordinatensystem ein und verbindest sie zu einer Linie. Daraus ergibt sich ein s-t-Diagramm. %<img class="n3VNCb" src="https://www.matheretter.de/img/wiki/steigungsdreieck.png" alt="Steigungsdreieck - Matheretter" width="165" height="110" data-noaft="1" /> % <strong>Titel:</strong> Weg-Zeit-Diagramm, <strong>Grafik 2:</strong> Die x-Achse bitte mit "Zeit <em>t</em>" und die y-Achse bitte mit "Weg <em>s</em>" beschriften. Die Skalierungen für 1 h, 2 h, 3 h, 4 h und 5 h sowie für 50 km, 100 km, 150 km, 200 km und 250 km sollten erkennbar sein. Daraus dann eine Gerade zeichnen. Dann ein Steigungsdreieck einzeichnen (siehe Bild). Dort wo ∆x steht bitte ∆t hinschreiben, dort wo ∆y steht bitte ∆s hinschreiben. Die Formel <strong>v<em> = ∆s / ∆t </em></strong>bitte daneben schreiben. Du kannst sehr gerne auch verschiedene Farben nutzen :). <strong>Alt-Text:</strong> s-t-Diagramm, t-s-Diagramm, Weg-Zeit-Diagramm, Weg Zeit Gesetz, st Diagramm, Gleichförmige Bewegung, Zeit Weg Diagramm %Hier nur bitte die Achsenbeschriftung anpassen: x-Achse: "Zeit t in h"; y-Achse: "Weg s in km"

s-t-Diagramm, t-s-Diagramm, Weg-Zeit-Diagramm, Weg Zeit Gesetz, st Diagramm, Gleichförmige Bewegung, Zeit Weg Diagramm
direkt ins Video springen
Weg-Zeit-Diagramm

Schauen wir uns die Bewegung des Autos genauer an: 

  • In einer Stunde fährt das Auto 50 km. Das sind also 50 km / 1 h = 50 km pro Stunde
  • Nach zwei Stunden hat es 100 km zurückgelegt. Auch das sind 100 km / 2 h = 50 km pro Stunde
  • In drei Stunden fährt das Auto 150 km. Wir kommen wieder auf 150 km / 3 h = 50 km pro Stunde.

Das Auto legt also konstant 50 km pro Stunde zurück. Damit weißt du, mit welcher Geschwindigkeit das Auto fährt: 50 km/h. Die Geschwindigkeit v, die wir berechnet haben, ist die Steigung des Graphen im s-t-Diagramm. Du bestimmst die Geschwindigkeit mit der Formel: Geschwindigkeit v ist gleich zurückgelegter Weg s geteilt durch vergangene Zeit t. 

    \[v = \frac{\Delta{s}}{\Delta{t}}\]

In unserem Beispiel fährt das Auto immer gleich schnell (konstante Geschwindigkeit), deshalb ist der Graph im Weg-Zeit Diagramm eine Gerade. Das Auto kann aber auch beschleunigen oder abbremsen, also schneller oder langsamer werden (konstante Beschleunigung). Die beiden Fälle schauen wir uns nun genauer an. 

s-t-Diagramm mit konstanter Geschwindigkeit

Bewegt sich ein Körper mit konstanter, also mit gleichbleibender Geschwindigkeit, ist die Steigung des Graphen überall gleich. Der Körper bremst nie ab und beschleunigt auch nicht. Das bedeutet, der Graph ist eine Gerade

Dabei gilt: 

s ~ t

Das bedeutet, Weg und Zeit sind proportional, also nehmen gleichmäßig zueinander zu. Verdoppelt sich die Zeit, verdoppelt sich also auch der Weg. Du sprichst von einer gleichförmig geradlinigen Bewegung oder von einer gleichförmigen Kreisbewegung

Je steiler der Graph, desto größer die Geschwindigkeit, mit der sich der Körper fortbewegt. Du bestimmst die Geschwindigkeit mit folgender Formel:

    \[v = \frac{\Delta{s}}{\Delta{t}}\]

 

∆s ist die zurückgelegte Strecke s zwischen zwei Zeitpunkten. ∆t ist die Differenz, also der Unterschied, zwischen diesen beiden Zeitpunkten. %<img class="n3VNCb" src="https://www.matheretter.de/img/wiki/steigungsdreieck.png" alt="Steigungsdreieck - Matheretter" width="164" height="109" data-noaft="1" /> % <strong>Titel:</strong> s-t-Diagramm mit konstanter Geschwindigkeit, <strong>Grafik 4:</strong> Hier die Grafik 2 aus dem Beispiel inklusive Steigungsdreieck kopieren. Bitte das Steigungsdreieck so einzeichnen, dass <em><strong>∆s = 100</strong></em> und <em><strong>∆t = 2 </strong></em>und das auch so beschriften. (Falls es für die Grafik besser ist, mit s = 150 und t = 3 zu arbeiten, dann geht das auch, dann einfach hier als Kommentar vermerken, damit ich das im Text ändern kann ;)) </span><span style="color: #ff00ff;"><strong>Alt-Text:</strong> s-t-Diagramm, t-s-Diagramm, Weg-Zeit-Diagramm, Weg Zeit Gesetz, st Diagramm, Zeitdiagramm, Geschwindigkeit berechnen, Gleichförmige Bewegung, Zeit Weg Diagramm %Hier auch nur die Achsenbeschriftung anpassen (siehe meine Anmerkungen beim Bild vorher) :)

s-t-Diagramm, t-s-Diagramm, Weg-Zeit-Diagramm, Weg Zeit Gesetz, st Diagramm, Zeitdiagramm, Geschwindigkeit berechnen, Gleichförmige Bewegung, Zeit Weg Diagramm
direkt ins Video springen
s-t-Diagramm mit konstanter Geschwindigkeit

In unserem Beispiel gilt ∆s = 100 km und ∆t = 2 h. Als Geschwindigkeit ergibt sich dann:

    \[v = \frac{\Delta{s}}{\Delta{t}} = \frac{100 \text{km}}{2 \text{h}} = 50 \frac{\text{km}}{\text{h}}\]

Da der Weg in Kilometer und die Zeit in Stunden angegeben sind, hat die Geschwindigkeit die Einheit km/h. Das Auto fährt also mit einer konstanten Geschwindigkeit von 50 km/h. 

s-t-Diagramm mit konstanter Beschleunigung

Bewegt sich ein Körper mit konstanter bzw. gleichmäßiger Beschleunigung a, nimmt seine Geschwindigkeit zu oder ab. Das bedeutet, dass sich die Steigung des Graphen verändert. Der Graph der konstanten Beschleunigung ist eine Parabel.

Dabei gilt:

 s ~ t 2

Das bedeutet, der Weg s nimmt mit dem Quadrat der Zeit t zu. Verdoppelt sich die Zeit, vervierfacht sich der Weg. Du sprichst von einer gleichmäßig beschleunigten gleichförmigen Bewegung

Ist die Parabel nach oben geöffnet, nimmt die Geschwindigkeit zu und der Körper beschleunigt (a>0). Ist die Parabel hingegen nach unten geöffnet, nimmt die Geschwindigkeit ab und der Körper bremst (a<0). Je steiler die Parabel verläuft, desto höher ist die Beschleunigung des Körpers. %<img class="n3VNCb" src="https://technikermathe.de/wp-content/uploads/2020/01/weg-zeit-diagramm-parabel-vergleich.jpg" alt="Weg-Zeit-Diagramm (konstante Beschleunigung) - Einfach 1a" width="254" height="143" data-noaft="1" /> % <strong>Titel:</strong> s-t-Diagramm mit konstanter Beschleunigung, <strong>Grafik:</strong> Die x-Achse bitte mit "Zeit <em>t</em>" und die y-Achse mit "Weg <em>s</em>" beschriften. Bitte wie im Beispiel zwei Parabeln einzeichnen. Bitte die Reihenfolge tauschen, also im ersten Graphen das mit a>0 haben. Den Text und das a>0 brauch ich nicht. </span><span style="color: #ff00ff;"><strong>Alt-Text:</strong> s-t-Diagramm, t-s-Diagramm, Weg-Zeit-Diagramm, Weg Zeit Gesetz, st Diagramm, Zeitdiagramm, Physik Geschwindigkeit berechnen, Zeit Weg Diagramm %Hier bin ich mir unsicher, "a" wird nicht im Text erwähnt und somit kann der User damit auch nix im Bild anfangen...Ich glaube die Beschleunigung ist a, hab das jetzt mal so im Text noch ergänzt. Wäre aber gut wenn Ylvalie da nochma drüber schaut. Am Bild muss erstma nichts geändert werden :)

s-t-Diagramm, t-s-Diagramm, Weg-Zeit-Diagramm, Weg Zeit Gesetz, st Diagramm, Zeitdiagramm, Physik Geschwindigkeit berechnen, Zeit Weg Diagramm
direkt ins Video springen
s-t-Diagramm mit konstanter Beschleunigung

Spezielle Formen der konstanten Beschleunigung sind die gleichmäßig beschleunigte Kreisbewegung und der freie Fall.

Geschwindigkeit 

Du weißt nun, dass die Steigung im Weg-Zeit-Diagramm die Geschwindigkeit v ergibt. Wie du die Geschwindigkeit berechnen kannst, zeigen wir dir hier und in unserem Video! %Thumbnailverweis

Zum Video: Geschwindigkeit berechnen
Zum Video: Geschwindigkeit berechnen

Hallo, leider nutzt du einen AdBlocker.

Auf Studyflix bieten wir dir kostenlos hochwertige Bildung an. Dies können wir nur durch die Unterstützung unserer Werbepartner tun.

Schalte bitte deinen Adblocker für Studyflix aus oder füge uns zu deinen Ausnahmen hinzu. Das tut dir nicht weh und hilft uns weiter.

Danke!
Dein Studyflix-Team

Wenn du nicht weißt, wie du deinen Adblocker deaktivierst oder Studyflix zu den Ausnahmen hinzufügst, findest du hier eine kurze Anleitung. Bitte lade anschließend die Seite neu.