Orthogonale Projektion Übungsaufgabe

Nun betrachten wir eine Übungsaufgabe für die orthogonale Projektion eines Vektors:

Gegeben sei im dreidimensionalen euklidischen Raum die folgende Ebene

E=\left\{\vec{\mathbit{x}}\in R^3:4x_1+8x_2-8x_3=0\right\}

Berechne die orthogonale Projektion des Vektors \vec{\mathbit{m}}=\left(\begin{matrix}1\\1\\1\\\end{matrix}\right) auf die Ebene E.

Bevor du aber losrechnest noch ein kleiner Tipp: um das Vorgehen aus unserem Video anwenden zu können, musst du zuerst die Darstellung der Ebene E in die richtige Form bringen.

Die Lösung und die Erklärung dieser Aufgabe findest du in unserem zugehörigen Übungsvideo .