Algebra
Gleichungen & Ungleichungen
 – Video
Video anzeigen

Mit dem Satz vom Nullprodukt kannst du Gleichungen einfacher lösen und Nullstellen berechnen. Wie das geht, zeigen wir dir in diesem Beitrag%und in unserem Video.

Satz vom Nullprodukt einfach erklärt

Der Satz vom Nullprodukt hilft dir bei Gleichungen, bei denen auf einer Seite ein Produkt steht und auf der anderen Seite eine 0.

Satz vom Nullprodukt

Ein Produkt ist gleich 0, wenn einer der Faktoren 0 ist.

Schau dir dieses Beispiel dazu an:

3x = 0 

Du kannst den Satz vom Nullprodukt anwenden, weil auf einer Seite der Gleichung ein Produkt steht und auf der anderen Seite eine 0. Die beiden Faktoren des Produkts sind 3 und x. Wegen der Nullproduktregel muss einer der Faktoren gleich 0 sein, also

3 = 0 oder x = 0

Weil 3 ungleich 0 ist, muss x gleich 0 sein. Deshalb ist x = 0 die Lösung der Gleichung.

Satz vom Nullprodukt: Aufgaben Quadratische Gleichungen 

Stell dir vor, du willst folgende quadratische Gleichung lösen:

x2 – 2x = 0

Hier kannst du die Produkt gleich null Regel nicht direkt anwenden, weil auf der linken Seite der Gleichung kein Produkt steht, sondern eine Summe. Dann gehst du so vor:

          1. x ausklammern

x(x – 2) = 0

          2. Satz vom Nullprodukt anwenden: Dafür setzen wir die Faktoren einzeln gleich 0:

x = 0 oder x – 2 = 0

          3. Einzelne Gleichungen lösen , falls nötig: 

x = 0 kannst du nicht weiter auflösen.

x – 2 = 0 kannst du auflösen zu x = 2.

Die Lösungen der Gleichung sind also x1 = 0 und x2 = 2.

Achtung! Wenn in der quadratischen Gleichung eine Zahl ohne x vorkommt, wie in x2 – 2x + 3 = 0, kannst du nicht ausklammern und den Satz vom Nullprodukt nicht anwenden! Hier hilft dir dann die Mitternachtsformel weiter.

Satz vom Nullprodukt: Aufgaben Nullstellen berechnen

Beispiel 1

Schau dir die Funktion f(x) = 2x4 – 6x3 an. Wie kannst du hier die Nullstellen berechnen ? Dafür setzt du zuerst die Funktion gleich 0:

2x4 – 6x3 = 0

Jetzt kannst du diese Gleichung lösen:

          1. Möglichst hohe Potenz von x ausklammern

x3 • (2x – 6) = 0

          2. Satz vom Nullprodukt anwenden: Dafür setzen wir die Faktoren einzeln gleich 0: 

x3 = 0 oder 2x – 6 = 0

          3. Einzelne Gleichungen lösen, falls nötig:

x3 = 0 kannst du auflösen zu x = 0.

2x – 6 = 0 kannst du auflösen:

\begin{aligned}2x - 6 &= 0 \qquad | + 6\\2x &= 6 \qquad | : 2\\ x &= 3\end{aligned}

Die Nullstellen der Funktion sind also x1 = 0 und x2 = 3.

Beispiel 2

Schau dir nun noch f(x) = (x + 1)2 • (x – 4) an und berechne die Nullstellen. Dazu musst du die Gleichung Null setzen: 

(x + 1)2 • (x – 4) = 0

Hier kannst du den Satz des Nullprodukts direkt anwenden, weil auf der linken Seite der Gleichung ein Produkt und auf der rechten Seite eine 0 steht.

          1. Satz vom Nullprodukt anwenden: Dafür setzen wir die Faktoren einzeln gleich 0: 

(x + 1)2 = 0 oder x – 4 = 0

          2. Einzelne Gleichungen lösen, falls nötig:

(x + 1)2 = 0 kannst du auflösen:

\begin{aligned}(x + 1)^2 &= 0 \qquad | \sqrt \\x + 1 &= 0 \qquad | - 1\\ x &= - 1\end{aligned}

x – 4 = 0 kannst du auflösen zu x = 4.

Die Lösungen der Gleichung sind also x1 = – 1 und x2 = 4.

Satz von Vieta

Willst du wissen, wie du quadratische Gleichungen sogar im Kopf lösen kannst? Dann schau dir unbedingt unser Video zum Satz von Vieta an! Viel Spaß damit!

%Thumbnail Satz von Vieta

Hallo, leider nutzt du einen AdBlocker.

Auf Studyflix bieten wir dir kostenlos hochwertige Bildung an. Dies können wir nur durch die Unterstützung unserer Werbepartner tun.

Schalte bitte deinen Adblocker für Studyflix aus oder füge uns zu deinen Ausnahmen hinzu. Das tut dir nicht weh und hilft uns weiter.

Danke!
Dein Studyflix-Team

Wenn du nicht weißt, wie du deinen Adblocker deaktivierst oder Studyflix zu den Ausnahmen hinzufügst, findest du hier eine kurze Anleitung. Bitte lade anschließend die Seite neu.