Du willst wissen, was es mit der abc Formel auf sich hat? Dann bist du bei unserem Video und Beitrag genau richtig!

Inhaltsübersicht

abc Formel einfach erklärt

Die abc-Formel verwendest du, um Nullstellen von quadratischen Funktionen der Form f(x) = ax2 + bx + c (z.B. f(x) = 2x² + x – 1) zu bestimmen. Um das zu tun, setzt du deine quadratische Funktion gleich 0:

ax2 + bx + c = 0

abc Formel

Zum Berechnen der beiden Nullstellen x1 und x2 einer quadratischen Gleichung verwendest du die abc-Formel:

    \[ x_{1,2} = \cfrac{-b \pm \sqrt{b^2-4ac}}{2a} \]

Den Teil unter der Klammer b– 4ac bezeichnest du als Diskriminante D. Mit ihr kannst du herausfinden, ob eine quadratische Gleichung eine, zwei oder keine Lösung hat:

  • D > 0:      Die quadratische Gleichung hat zwei Lösungen

  • D = 0:      Die quadratische Gleichung hat eine Lösung

  • D < 0:      Die quadratische Gleichung hat keine Lösung

abc Formel Aufgaben

Möchtest du die Nullstellen einer quadratischen Funktion mithilfe der abc Formel ausrechnen, kannst du unsere Schritt-für-Schritt-Anleitung befolgen. 

Beispiel 1: 2x2 – 16 = 4x 

  • Schritt 1: Gleichung gleich 0 setzen. Um die abc-Formel anzuwenden, muss auf einer Seite der Gleichung die Null stehen. Ggf. musst du die Gleichung umstellen.

2x2 – 16 = 4x          | – 4x

2x2 – 16 – 4x = 0

2x2 – 4x – 16 = 0

  • Schritt 2: Koeffizienten a, b und c ablesen

ax2 + bx + c = 0

2x2 – 4x – 16 = 0

a = 2,          b = -4,          c = -16

  • Schritt 3:  a, b und c in die Formel einsetzen

x_{1,2} = \cfrac{-\textcolor{blue}{b} \pm \sqrt{\textcolor{blue}{b}^2-4\textcolor{red}{a}\textcolor{olive}{c}}}{2\textcolor{red}{a}}

x_{1,2} = \cfrac{-(\textcolor{blue}{-4}) \pm \sqrt{(\textcolor{blue}{-4})^2-4\cdot \textcolor{red}{2}\cdot (\textcolor{olive}{-16}})}{2 \cdot \textcolor{red}{2}}

  • Schritt 4: Ergebnisse ausrechnen

x_{1,2} = \cfrac{4 \pm \sqrt{16-8 \cdot (-16)}}{4} = \cfrac{4 \pm \sqrt{16+128}}{4} = \cfrac{4 \pm \sqrt{144}}{4} =\cfrac{4 \pm 12}{4}

\Longrightarrow \quad  \quad  x_1 =\frac{4+12}{4}= 4     und     x_2 = \frac{4-12}{4}= -2

  • Schritt 5: Nullstellen aufschreiben

x1 = 4

x2 = -2

Beispiel 2: f(x) = x2 + 4x + 4 

  • Schritt 1: Gleichung gleich 0 setzen

x2 + 4x + 4 = 0

  • Schritt 2: a, b und c ablesen

a = 1,          b = 4,          c = 4

  • Schritt 3:  a, b und c in die Formel einsetzen

x_{1,2} = \cfrac{-\textcolor{blue}{b} \pm \sqrt{\textcolor{blue}{b}^2-4\textcolor{red}{a}\textcolor{olive}{c}}}{2\textcolor{red}{a}}

x_{1,2} = \cfrac{-\textcolor{blue}{4} \pm \sqrt{\textcolor{blue}{4}^2-4\cdot\textcolor{red}{1}\cdot\textcolor{olive}{4}}}{2\cdot\textcolor{red}{1}}

  • Schritt 4: Ergebnisse ausrechnen

x_{1,2} = \cfrac{-4 \pm \sqrt{16-16}}{2} = \cfrac{-4 \pm 0}{2}

\Longrightarrow \quad  \quad  x_1 =\frac{-4+0}{2}= -2     und     x_2 = \frac{-4-0}{2}= -2

  • Schritt 5: Nullstellen aufschreiben

x1 = -2

x2 = -2

Deine Funktion hat bei x= -2 eine doppelte Nullstelle.

abc Formel Herleitung

Abschließend zeigen wir dir, wie du die abc Formel herleiten kannst. Das ist gar nicht so schwer, da hier die allgemeine Form lediglich nach x aufgelöst wird. Für die Herleitung benötigst du die quadratische Ergänzung und die erste binomische Formel .

    \begin{align*} ax^2+bx+c&=0  \qquad | -c\\ ax^2+bx&=-c       \qquad| \div a \\          x^2+\cfrac{b}{a}x &= -\cfrac{c}{a}\qquad        | \text{ quadratische Ergänzung}\\ x^2+\cfrac{b}{a}x +\left(\cfrac{b}{2a}\right)^2&= -\cfrac{c}{a} + \left(\cfrac{b}{2a}\right)^2\\ x^2+\cfrac{b}{a}x +\left(\cfrac{b}{2a}\right)^2&= -\cfrac{c}{a} + \cfrac{b^2}{4a^2}\\ x^2+\cfrac{b}{a}x +\left(\cfrac{b}{2a}\right)^2&=   \cfrac{b^2-4ac}{4a^2}\qquad       | \text{ erste binomische Formel}\\ \left(x+\cfrac{b}{2a}\right)^2&=   \cfrac{b^2-4ac}{4a^2} \qquad            |\sqrt\\ x+\cfrac{b}{2a} &=\pm \sqrt{\cfrac{b^2-4ac}{4a^2}} \qquad | -\cfrac{b}{2a}\\ x & = -\cfrac{b}{2a}\pm \sqrt{\cfrac{b^2-4ac}{4a^2}}\\ x & = -\cfrac{b}{2a}\pm \cfrac{\sqrt{b^2-4ac}}{2a}\\ \Rightarrow x_{1,2} &= \cfrac{-b\pm \sqrt{b^2-4ac}}{2a}\\ \end{align*}

pq-Formel

Neben der abc-Formel kannst du zum Lösen von quadratischen Gleichungen auch die pq-Formel verwenden. Welche Formel das ist und wie du sie anwendest, zeigen wir dir in unserem Video!

pq Formel, quadratische Gleichungen lösen, Nullstellen berechnen
Zum Video: pq Formel