Wie rechnest du nach dem Funktionenmultiplizieren die Ableitung aus? Dafür gibt es eine spezielle Ableitungsregel. Hier zeigen wir dir, wie du die Produktregel benutzen kannst. Schaue dir auch unser passendes Video an!
Ableitung Produktregel
Die Produktregel brauchst du bei der Ableitung von Funktionen, die aus einem Produkt bestehen. Dafür zerlegst du deine Funktion f(x) in zwei Teilfunktionen u(x) und v(x). u und v kannst du mit den anderen Ableitungsregeln ableiten (u‘ und v‘) und in deine Produktregel einsetzen.
Ist deine Funktion f(x) ein Produkt aus den Funktionen u(x) und v(x), dann leitest du die Teilfunktionen unabhängig voneinander ab, um insgesamt die Ableitung der gesamten Funktion zu erhalten:
Ableitung Multiplikation in der Kurzschreibweise:
Beispiel 1: Ganzrationale Funktionen
Leite die Funktion ab! Deine Teilfunktionen lauten:
Du kannst die Teilfunktionen wie ganzrationale Funktionen mit der Potenzregel und der Summenregel ableiten.
Setze u, v, u‘ und v‘ in deine Ableitungsregel ein! Danach musst du nur noch ausklammern und vereinfachen.
Die Ableitung von f ist also 60x2+24x. Gar nicht so schwer, oder?
Beispiel 2: Sinus und Exponentialfunktion
Schauen wir uns noch ein schwierigeres Beispiel an. Häufig musst du mit der Produktregel auch die Kettenregel anwenden. Berechne deshalb die Ableitung von Funktionen mit trigonometrischen und Exponentialfunktionen!
Zuerst schreibst du dir wieder deine Teilfunktionen u und v heraus.
Danach musst du die Teilfunktionen ableiten. Fange mit der Teilfunktion u an. Die Ableitung Sinus
ist der Cosinus, aber was ist die Ableitung von sin(2x)? Dafür brauchst du die Kettenregel
. Sie lautet: . Wenn Du mit der Kettenregel ableiten musst, berechnest Du zuerst die Ableitung der äußeren Funktion g'(x) und multiplizierst sie mit der Ableitung der inneren Funktion h'(x).
Hier ist die Ableitung der äußeren Funktion cos(x) und die Ableitung der inneren Funktion 2x ist gleich 2.
Für die Teilfunktion v leitest du zuerst die e-Funktion ab. Die Ableitung der e-Funktion ist die e-Funktion selbst. Danach musst du das mit der Ableitung der inneren Funktion 4x3 multiplizieren. Die Ableitung der inneren Funktion ist 12x2.
Setze u, v, u‘ und v‘ in die Produktregel ein!
Wenn du Exponentialfunktionen ableitest, macht Ausklammern deine Ableitung viel leserlicher.
Mit der Produktregel kannst du das Produkt von Funktionen ableiten:
f(x) = u(x) • v(x) ⇒ f'(x) = u(x) • v'(x) + u'(x) • v(x)
Diese Ableitungsregel nennst du auch Leibniz-Regel, nach dem deutschen Mathematiker Gottfried Wilhelm Leibniz.
Quotientenregel Ableitung
Jetzt kannst du Produkte ableiten, aber wie gehst du mit gebrochen-rationalen Funktionen um? Bei Ableitungen von Funktionen mit Brüchen brauchst du die Quotientenregel.
Schaue dir das am besten unser Video dazu an!
Weitere Ableitungsregeln
Die Produktregel ist eine von vielen Ableitungsregeln der Differentialrechnung. Weitere wichtige Ableitungsregeln sind:
Ableitungsregel | Funktion | Ableitung |
Quotientenregel | ![]() |
![]() |
Summenregel | ![]() |
![]() |
Differenzregel | ![]() |
![]() |
Kettenregel | ![]() |
![]() |
Potenzregel | ![]() |
![]() |
Faktorregel | ![]() |
![]() |