Funktionen
Exponentialfunktion & Logarithmus
 – Video

Hier erfährst du, welche Rechenregeln es für den natürlichen Logarithmus gibt und wie du mit den ln Regeln rechnen kannst. In unserem Video erklären wir es dir anschaulich. Schau es dir gleich an!

ln Regeln einfach erklärt  

Für den natürlichen Logarithmus  gibt es einige Rechenregeln, mit denen du den ln umformen kannst. 

ln Regeln

\ln (\textcolor{red}{x} \cdot \textcolor{blue}{y}) = \ln \textcolor{red}{x} + \ln \textcolor{blue}{y}

\ln (\frac{\textcolor{red}{x}}{\textcolor{blue}{y}}) = \ln \textcolor{red}{x} - \ln \textcolor{blue}{y}

\ln \textcolor{red}{x}^{\textcolor{blue}{n}} = \textcolor{blue}{n} \cdot \ln \textcolor{red}{x}

\ln \sqrt[\textcolor{blue}{n}]{\textcolor{red}{x}} = \frac{1}{\textcolor{blue}{n}} \ln \textcolor{red}{x}

Erinnerung: Der Logarithmus zur Basis e ist der ln: \log_e x = \ln x.

Wenn du den natürlichen Logarithmus als Funktion betrachtest, dann gibt es noch mehr Regeln zum Beispiel fürs Ableiten. Mehr dazu erfährst du in unserem Beitrag zur ln Funktion

ln Rechenregeln  

Gehen wir doch die einzelnen Rechenregeln gemeinsam durch und schauen uns einige Beispiele dazu an. Übrigens funktionieren die ln Gesetze genau wie die Logarithmus Regeln

ln Regeln Produkt  

Mit dieser Regel kannst du ein Produkt zu einer Addition umschreiben.

\ln (\textcolor{red}{x} \cdot \textcolor{blue}{y}) = \ln \textcolor{red}{x} + \ln \textcolor{blue}{y}

Am besten schaust du dir dafür gleich mal einige Beispiele an.

  • \ln (\textcolor{red}{5} \cdot \textcolor{blue}{3}) = \ln \textcolor{red}{5} + \ln \textcolor{blue}{3} \approx 2,71
  • \ln (\textcolor{red}{2} \cdot \textcolor{blue}{4}) = \ln \textcolor{red}{2} + \ln \textcolor{blue}{4} \approx 2,08

Du kannst diese Regel auch rückwärts verwenden und so den ln zusammenfassen.

  • \ln \textcolor{red}{3} + \ln \textcolor{blue}{10} = \ln (\textcolor{red}{3} \cdot \textcolor{blue}{10}) = \ln 30 \approx 3,40

ln Regeln Division  

Ganz ähnlich sieht die nächste Rechenregel aus.

\ln \frac{\textcolor{red}{x}}{\textcolor{blue}{y}} = \ln \textcolor{red}{x} - \ln \textcolor{blue}{y}

Hier kannst du einen Bruch zu einer Differenz umformen.

  • \ln \frac{\textcolor{red}{5}}{\textcolor{blue}{3}} = \ln \textcolor{red}{5} - \ln \textcolor{blue}{3} \approx 0,51
  • \ln \frac{\textcolor{red}{1}}{\textcolor{blue}{2}} = \ln \textcolor{red}{1} - \ln \textcolor{blue}{2} \approx -0,69

Alle ln Gesetze wirst du auch häufig wieder rückwärts anwenden, um damit den ln vereinfachen zu können. 

  • \ln \textcolor{red}{3} - \ln \textcolor{blue}{10} = \ln \frac{\textcolor{red}{3}}{\textcolor{blue}{10}} \approx -1,20

ln Regeln Potenz  

Mit der nächsten Regel kannst du einen Exponenten vor den ln ziehen.

\ln \textcolor{red}{x}^{\textcolor{blue}{n}} = \textcolor{blue}{n} \cdot \ln \textcolor{red}{x}

An den Beispielen siehst du sehr schön was passiert.

  • \ln \textcolor{red}{3}^{\textcolor{blue}{2}} = \textcolor{blue}{2} \cdot \ln \textcolor{red}{3} \approx 2,20
  • \ln \textcolor{red}{2}^{\textcolor{blue}{5}} = \textcolor{blue}{5} \cdot \ln \textcolor{red}{2} \approx 3,47

Natürlich funktioniert das auch in diesem Fall wieder rückwärts. 

  • \textcolor{blue}{4} \cdot \ln \textcolor{red}{3} = \ln \textcolor{red}{3}^{\textcolor{blue}{4}} = \ln 81 \approx 4,39

ln Gesetze Wurzel  

Mit der letzten der ln Rechenregeln kannst du Ausdrücke mit einer Wurzel vereinfachen.

\ln \sqrt[\textcolor{blue}{n}]{\textcolor{red}{x}} = \frac{1}{\textcolor{blue}{n}} \ln \textcolor{red}{x}

Auch dieses ln Gesetz kannst du mit den Beispielen nachvollziehen.

  • \ln \sqrt[\textcolor{blue}{2}]{\textcolor{red}{16}} = \frac{1}{\textcolor{blue}{2}} \ln \textcolor{red}{16} \approx 1,39
  • \ln \sqrt[\textcolor{blue}{3}]{\textcolor{red}{27}} = \frac{1}{\textcolor{blue}{3}} \ln \textcolor{red}{27} \approx -1,09

Du kannst mit dieser Regel auch den ln zusammenfassen.

  • \frac{1}{\textcolor{blue}{2}} \ln \textcolor{red}{9} = \ln \sqrt[\textcolor{blue}{2}]{\textcolor{red}{9}} = \ln 3 \approx 1,10

Natürlicher Logarithmus  

Alle Regeln, die wir dir hier vorgestellt haben, gelten für den natürlichen Logarithmus ln. Du willst mehr über dieses Thema erfahren? Dann schau dir gleich unser Video zum natürlichen Logarithmus an! 

Zum Video: Natürlicher Logarithmus
Zum Video: Natürlicher Logarithmus

Hallo, leider nutzt du einen AdBlocker.

Auf Studyflix bieten wir dir kostenlos hochwertige Bildung an. Dies können wir nur durch die Unterstützung unserer Werbepartner tun.

Schalte bitte deinen Adblocker für Studyflix aus oder füge uns zu deinen Ausnahmen hinzu. Das tut dir nicht weh und hilft uns weiter.

Danke!
Dein Studyflix-Team

Wenn du nicht weißt, wie du deinen Adblocker deaktivierst oder Studyflix zu den Ausnahmen hinzufügst, findest du hier eine kurze Anleitung. Bitte lade anschließend die Seite neu.