Die Normalform und die Scheitelpunktform spielen bei quadratischen Funktionen eine große Rolle. Du willst wissen, wie du die beiden Formen ineinander umwandeln kannst? Dann bist du hier und im Video genau richtig!
Die Normalform und die Scheitelpunktform einer Parabel kannst du ganz leicht unterscheiden:
2x2 – 4x – 2
Allgemein hat die Normalform einer quadratischen Funktion immer die Struktur ax2 + bx + c. Dabei kannst du für a, b und c verschiedene Zahlen wählen, wie oben im Beispiel 2, -4 und-2.
2 • (x – 1)2 – 4
Allgemein erkennst du immer die Struktur a • (x – d)2 + e. Die Buchstaben a, d und e stehen dabei stellvertretend für Zahlen.
An der Normalform kannst du den Schnittpunkt mit der y-Achse direkt ablesen. Bei der Scheitelpunktform erkennst du sofort den Scheitelpunkt. Daher musst du die beiden Formen oft ineinander umwandeln. Aber wie genau kannst du quadratische Funktionen umformen?
Die Scheitelpunktform hat den Vorteil, dass du daran direkt den Scheitelpunkt einer Parabel ablesen kannst. Deshalb formst du oft eine Normalform in die Scheitelpunktform um.
Dafür brauchst du mit der quadratischen Ergänzung nur 5 Schritte. Schau dir diese am Beispiel 2x2 – 4x – 2 an:
2 • (x2 – 2x – 1)
2 • (x2 – 2x + 12 – 12– 1)
2 • ((x – 1)2 – 12– 1)
2 • ((x – 1)2 – 2)
2 • (x – 1)2 – 4
Super, schon hast du deine Scheitelpunktform! Hier siehst du die Schritte nochmal im Überblick:
Du hast eine quadratische Funktion in der allgemeinen Form ax2 + bx + c gegeben. Mit der quadratischen Ergänzung kannst du sie in die Scheitelpunktform a • (x – d)² + e umwandeln:
Übrigens: An der Scheitelpunktform kannst du sofort den Scheitelpunkt ablesen. Die x-Koordinate ist die Zahl in der Klammer (mit geändertem Vorzeichen!) und die y-Koordinate ist die Zahl hinter der Klammer. Der Scheitelpunkt S ist im Beispiel also:
S(1|-4)
Die Normalform einer quadratischen Funktion brauchst du, wenn du zum Beispiel die Mitternachtsformel oder die pq-Formel anwenden willst, um Nullstellen zu finden. Außerdem kannst du an der Normalform ganz leicht den Schnittpunkt mit der y-Achse (y-Achsenabschnitt) ablesen.
Deshalb musst du oft die Scheitelpunktform in die Normalform umwandeln. Dafür brauchst du nur 3 einfache Schritte. Schau sie dir am Beispiel einer quadratischen Funktion an:
2 • (x2 – 2x + 1) – 4
2x2 – 4x + 2 – 4
2x2 – 4x – 2
Prima! Damit hast du deine Normalform der Parabel gefunden!
Du hast die Scheitelpunktform a • (x – d)2 + e einer quadratischen Funktion gegeben. Wenn du sie in die Normalform ax2 + bx + c umwandeln willst, gehst du so vor:
Übrigens: An der Normalform kannst du sofort den Schnittpunkt S der Parabel mit der y-Achse ausrechnen. Er liegt bei S(0|-2).
Du hast gesehen, dass du die quadratische Ergänzung brauchst, um die Normalform einer quadratischen Funktion in eine Scheitelpunktform umzuformen. Du möchtest dazu noch mehr Beispiele sehen und Aufgaben rechnen? Dann schau dir unser Video und unseren Artikel an!
Hallo, leider nutzt du einen AdBlocker.
Auf Studyflix bieten wir dir kostenlos hochwertige Bildung an. Dies können wir nur durch die Unterstützung unserer Werbepartner tun.
Schalte bitte deinen Adblocker für Studyflix aus oder füge uns zu deinen Ausnahmen hinzu. Das tut dir nicht weh und hilft uns weiter.
Danke!
Dein Studyflix-Team
Wenn du nicht weißt, wie du deinen Adblocker deaktivierst oder Studyflix zu den Ausnahmen hinzufügst, findest du hier eine kurze Anleitung. Bitte lade anschließend die Seite neu.