Verhältnis berechnen
In diesem Beitrag zeigen wir dir, wie du ein Verhältnis ausrechnen kannst. Die gängigen Aufgaben und Beispiele helfen dir, die Verhältnisberechung zu verstehen. Schau Dir auch unser Video dazu an, in dem Du Verhältnis berechnen richtig gut erklärt bekommst!
Inhaltsübersicht
Verhältnisse berechnen einfach erklärt
Wenn du zwei Zahlen miteinander vergleichen möchtest, kannst du ihr Verhältnis berechnen. Stell dir zum Beispiel vor, du hast 2 Liter Cola und 6 Liter Orangenlimonade für eine Party gekauft. Du willst Spezi mischen. Wie groß ist das Verhältnis von Orangenlimonade zu Cola in deiner Spezi?
Das Verhältnis von Cola zu Limonade ist die Menge der Cola geteilt durch die Menge an Limonade:
Den Bruch kannst du vereinfachen, indem du mit 3 kürzt:
Deine Spezi hat ein Verhältnis von Cola zu Limonade von 1 zu 3. In deiner Spezi ist also 3-mal mehr Limonade als Cola. Verhältnisse gibt es nicht nur in Mathe. Häufig musst du beim Kochen und Backen von verschiedenen Zutaten das Verhältnis berechnen.
Verhältnisse bilden
Das Verhältnis von zwei Zahlen und kannst du benutzen, um und miteinander zu vergleichen. Am einfachsten tust du das, indem du die beiden Zahlen durch einander teilst. Das Verhältnis von und ist also:
Die Reihenfolge ist wichtig! Da musst du aufpassen. Umgekehrt ist das Verhältnis von und :
und heißen Glieder des Verhältnisses. Es gibt viele verschiedene Schreibweisen für Verhältnisse. Lass dich dadurch aber nicht aus der Ruhe bringen! Alle Schreibweisen heißen dasselbe und meinen einen Bruch. Wenn du nicht mehr weißt, wie die Bruchrechnung funktioniert, schau dir dieses Video an.
Du kannst das Verhältnis zwischen 1 und 4 auf verschiedene Weise schreiben:
– als Bruch:
– mit Doppelpunkt:
– mit Querstrich: oder
– mit Worten: 1 zu 4
Verhältnisse berechnen
Folgende Beispiele helfen dir, die Verhältnisrechnung zu verstehen und zeigen dir, wie du die Verhältnisse bildest. Um Verhältnisse zu berechnen, brauchst du häufig die Primfaktorzerlegung und Bruchrechnung. Falls du da nicht mehr so fit bist, ist das nicht schlimm! Schau dir einfach unsere Beiträge zur Primfaktorzerlegung und Bruchrechnung an.
Es gibt viele verschiedene Sätze, hinter denen sich Verhältnisrechnungen verstecken können. Wenn du eines dieser Wörter in einer Textaufgabe siehst, musst du die Zahlen ins Verhältnis setzen.
– … das Verhältnis zwischen 1 und 5 …
– … auf 1 Sachen kommen 3 Dinge …
– … 2 Sachen pro 3 Dinge …
– … für 1 Sache gibt es 4 Dinge …
– … 1 zu 2 …
Verhältnis ausrechnen
Stell dir vor, du hast zwei Zahlen gegeben und sollst das Verhältnis der beiden Zahlen berechnen. Diese zwei Beispiele helfen dir dabei:
Beispiel 1: Seitenverhältnis berechnen
- Stell dir vor, dein Fernseher ist weit und hoch. Wie groß ist das Verhältnis der beiden Seiten?
- Das heißt und .
- Allgemein sieht das Verhältnis so aus: . Damit ist das Seitenverhältnis deines Fernsehers:
- Als Nächstes musst du den Bruch kürzen. Du suchst die größte Zahl, die 48 und 27 teilen kann. Schau dir das Video zum größten gemeinsamen Teiler an, wenn du nicht mehr weißt, wie das geht. 48 und 27 sind beides Vielfache von 3. Die 3 kürzt sich raus:
- Dein Fernseher hat also ein Seitenverhältnis von 16 zu 9.
Beispiel 2: Verhältnisberechnung beim Kuchenbacken
- Stell dir vor, du möchtest einen Kuchen backen. Für deinen Teig brauchst du Wasser und geschmolzene Butter. Wie groß ist das Verhältnis von Butter zu Wasser?
- Dividiere also die Menge an Butter durch die Menge an Wasser! Danach vereinfachst Du den Bruch.
- Dein Kuchen hat also ein Butter-zu-Wasser-Verhältnis von 1 zu 4.
Verhältnisglieder ausrechnen Typ 1
Eine andere typische Aufgabe ist folgendes: Du weißt das Verhältnis von zwei Dingen und du weißt die Gesamtanzahl aller Dinge, also . Wie groß sind dann deine Zahlen und ?Diese zwei Beispiele erklären es dir:
Beispiel 3: Verhältnis berechnen Mädchen zu Jungen
- Stell dir vor, in deiner Klasse sind 20 Schüler und du weißt das Verhältnis von Jungen zu Mädchen ist 1 zu 3. In der Schulaufgabe könnte die Frage lauten: Wie viele Mädchen sind in der Klasse?
- Weil in deiner Klasse das Verhältnis von Jungen zu Mädchen 1 zu 3 ist, besteht sie aus 1 Gruppe Jungen und 3 Gruppen Mädchen. Du kannst deine Klasse in insgesamt 4 Gruppen aufteilen.
- Jetzt verteilst du die 20 Schüler auf 4 Gruppen, indem du 20 durch 4 dividierst und vereinfachst:
- Jede Gruppe besteht also aus 5 Schülern. Das bedeutet 1 Teil deiner Klasse sind 5 Schüler.
- Das Verhältnis von 1 zu 3 sagt dir, dass 3 Teile deiner Klasse Mädchen sind. Es müssen also so viele Schüler deiner Klasse Mädchen sein:
- Bei einem Jungen-Mädchen-Verhältnis von 1 zu 3 sind von den 20 Schülern also 15 Mädchen.
Beispiel 4: Verhältnis berechnen in Prozent
- Wie viel Prozent der Klasse sind Mädchen? Oder: Wie groß ist der Anteil der Mädchen in der Klasse?
- In Beispiel 3 hast du ausgerechnet, dass eine Klasse mit 20 Schülern 15 Mädchen hat, wenn das Jungen-zu-Mädchen-Verhältnis 1 zu 3 ist.
- Wenn dich dein Lehrer nach Prozentzahlen fragt, will er den Anteil der Mädchen an allen Schüler wissen. In diesem Fall ist es das Verhältnis 15 Mädchen zu 20 Schülern.
- Um ein Verhältnis in Prozent zu erhalten, musst du den Bruch so erweitern, dass herauskommt. Da ist, nimmst du Dein Verhältnis mal 5:
- Du erhältst . Deine Klasse besteht zu aus Mädchen.
Verhältnisglied ausrechnen Typ 2
Eine weitere typische Aufgabe gibt dir ein Verhältnis von zwei Dingen und die Menge eines der beiden Dinge . Wie viele gibt es dann von der zweiten Sache ? Folgende Beispiele zeigen es dir:
Beispiel 5: Murmelsäckchen
- Stell dir vor, du hast ein Säckchen mit Murmeln. Auf der Packung steht: „Für zwei blaue Murmeln sind drei gelbe Murmeln enthalten.“ Du hast die gelben Murmeln gezählt und weißt, es sind 12 gelbe Murmeln. Wie viele blaue Murmeln hast du?
- Du weißt das Verhältnis von blauen zu gelben Murmeln ist die Anzahl der blauen durch die Anzahl der gelben Murmeln:
- Dann kannst du das Verhältnis von blauen zu gelben Murmeln mal die Anzahl der gelben Murmeln nehmen, um die Zahl der blauen Murmeln auszurechnen:
- Den Bruch kannst du wieder kürzen. 12 ist ein Vielfaches von 3:
- Anschließend vereinfachst du den Bruch:
- Du siehst: Wenn die Packung 2 blaue für 3 gelbe Murmeln enthält und du bereits 12 gelbe Murmeln gezählt hast, müssen 8 blaue Murmeln im Säckchen sein.
Beispiel 6: Verhältnisberechnung Kuchen backen
- Stell dir vor, du willst einen Geburtstagskuchen backen und im Rezept steht „50 Gramm Mehl reichen für 2 Personen„, aber es kommen 10 Freunde. Wie viel Mehl brauchst du für den Kuchen?
- Zuerst musst du wissen, wie viel Mehl du für einen Freund brauchst. Teile dafür die Menge an Mehl durch die Zahl der Personen:
- Das Verhältnis von Mehl zu Freund ist 25 zu 1. Rechne das Verhältnis von Mehl zu Personen mal Deine 10 Freunde und vereinfache:
- Du musst also 250 Gramm Mehl für 10 Freunde kaufen, wenn das Verhältnis von Mehl zu Freund 25 zu 1 ist.
Bruchrechnen
Du hast bestimmt schon gemerkt, dass Brüche beim Verhältnis berechnen das A und O sind. Wenn dich Brüche noch ins Schwitzen bringen, darfst du dir unsere Video zur Bruchrechnung nicht entgehen lassen! Dann läuft die nächste Schulaufgabe wie am Schnürchen.